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I. INTRODUCTION

The development of a computer code which can be used to calculate
the effects of a circular cylinder on the radiation pattern of an aperture
antenna is described in this report. The motivation for this research is
to investigate the pattern degradation of shipboard antennas caused by
nearby masts.

The report is divided into two parts. The first part is concerned
with the derivation of expressions for the fields diffracted by a rela-
tively small (in terms of X) circular cylinder. The resulting solutions
for this diffracted field are put into the GTD format so that the cylinder
diffraction coefficients can be identified. Thus, the results can be

anincorporated into a general, ray-optical analysis of a radiating system.

The second part of the report is concerned with using the above results
to predict the degradation of the pattern of the LAMPS antenna caused by
the presence of a nearby cylinder. The LAMPS antenna is a 34" parabolic
dish with a nominal frequency of 4.6 GHz. The resulting computer code is
capable of calculating the radiation pattern of the LAMPS antenna both with
and without the diffracting cylinder present, so that the effects of the
cylinder on the radiation pattern can be easily seen. While the present
computer code is limited to calculating patterns in a plane perpendicular
to the cylinder axis, with the cylinder being parallel to the plane of the
aperture, the theory presented herein is adequate to provide for an exten-

* sion of the code to the more general case.

II. CYLINDER DIFFRACTION COEFFICIENTS

The goal of this derivation is the development of diffraction coeffi-
cients which can be used to find the diffracted fields due to an incident
wave interacting with a perfectly-conducting circular cylinder. Two cases
will be considered: the soft boundary case (H field perpendicular to the
cylinder axis) and the hard boundary case (E field perpendicular to the
cylinder axis). The method will be quite straightforward; a canonical

* problem will be solved and asymptotic approximations will be made so that
the resulting solution can be interpreted ray-optically. Then this solution
will be compared with a GTD solution to obtain the unknown diffraction
coefficients.

It will be seen that the resulting diffraction coefficients are
analogous to those encountered in wedge diffraction, which is not sur-
prising since in both cases one is dealing with a line of scattering (the

*axis of the wire or the edge of the wedge). 0



B. Soft Diffraction Coefficient

The geometry of the canonical problem we wish to consider is shown
in Figure 1. The field incident on a perfectly-conducting cylinder of radius

z

Field Point
r,e,:)

a

Od

QC/ CURRENT"
a",,. /MOMENT "ej (DIPOLE)

Z"'

Figure 1. z directed current moment (dipole in the presence of a circular
cylinder centered on the z axis.
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a is due to a z-directed electric current moment Pe=Ik at p=p, =0, z=O. The
current I extends over the incremental distance Z<<X. The cylindrical dif-
fraction point Qc is located on the axis of the cylinder at the point where
bd=bi. The cylinder (or wire) like the edge of a wedge is a line of
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scattering, so the angle of diffraction bd equals the angle of incidence bi.
The field point is located using the ordinary spherical coordinates (r,6,0).

Considering the problem ray-optically F2], we can express the-
component of the diffracted electric field Ed as

ds -jks
E (s) E s(QclDs -T+s1- e (-

in which Ei(Qc) is the incident electric field at Qc, Ds is the soft
diffraction coefficient, and s' is the caustic distance. see Equation 6.42
of [2]. Note that El is in the plane of incidence formed by the cylinder
axis and the ray incident from the current moment (or dipole) to Qc. The
above expression is analogous to that used to calculate the fields dif-
fracted by a wedge; the diffraction coefficient remains to be found.

When Q is in the far-zone of the current moment, the incident fieldc
kPen e-jks'

Ei(Q) _j e-J eks' sinei ; (2)

in which k = 2/ is the wave number and n is the characteristic impedance
of free space. Combining (1) with (2)

dkPe siniD 1 - e-jk(s'+s) (3) -.
1= ss'(s+s')

One can obtain an eigenfunction solution for this same geometry.
When the field point is in the far zone, the 0 component of the total
electric field is given by

kp r sine -jkr jkp sinocos
E0 e [e - SI] (4)

4T r e

where

.= ~ m Jm(ka sin o) (2)SeJ (2 H (kPo0Sino)cos ms , (5)

e m=O (ka sine) m
m

the phase reference is the origin, and

1 , m=O

2, mAO.

In the far-zone note that e:0i=0d"

3
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II

The result given in (4) and (5), which is derived in the Appendix,
has been obtained previously by reciprocity arguments [3], the Hertzvector [4] and the Green's function method [5]. --

In (4) it is apparent that the first term is the incident field of
the dipole, so the second term must be the field diffracted from the
cylinder. Referring the phase of the second term to Qc with

r s s + z0 cosO , (7)

kp n -jkz cose ejk s

Ed(s) _j sine S e s (8)
0 4 Se e

The above equation may be compared now with the far-zone form of (3)*

d kpen e-jks' e-jks
E (s) = -J 4T sine Ds e (9)

to obtain

-ikz ,coso (0
Ds =-is e Se e

In this form Ds is dependent on the distance s' from Qc to the source,
the distance zo from Qc to the origin, and the distance Po from the
origin to the source; where Po appears in the expression for Se. We
will next simplify the above equation for Ds to remove the dependence
on these distances, so that Ds will depend only on the cylinder radius . '
a, x, and the aspects of incidence and diffraction as viewed from Qc.

A case commonly encountered in practice occurs when PQ >, a, i.e.,
the dipole is many radii removed from the cylinder. For this situation
we can introduce the large argument asymptotic approximation of the
Hankel function,

(2). .m jkp sine

HM (kp 0sine) A~~oine m e (1

into the equation for Se. In the above approximation the argument must

be much larger than the order; however this condition is met for the
terms in the series which contribute significantly to Se. Thus Se
reduces to

*.Note that the E-field unit vectors defined in Figure 1 are in the _.:

-0 direction.
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* -, - -- qj+ ] r ~ r

-" -ik sinb 1 (0 sine) j] Se 7, i - es I rJ,0 J' I( ? LO :01
D C i=0 I)P (ka sin-)

:i[ployi'nq the abov, equation in (10) and utilizinq the relationships

s' p P/Sin' 0 sinO + ZoCOSJ, (13'
0S

it is found that

- lka sined)

n = 1) s CS 
7 

(14)
S m (ka si&

when P>0 a. This is the desired form for the soft diffraction coeffi-
'- cient, since it depends only on a/\ and the aspects of incidence and

diffraction. It may be used in (1) even thouqh the field point is not
in the far zone, where s -. s'; it is sufficient that K£ sined -' I.
This explains why ed has been used in place of e in (14). For a very

thin wire where ka 1, the formula for Ds simplifies further to

D -e __(15)

s 7 sine d  kn 2-in(v ka sine d)-j 7

in which v = 1.781. It is seen that Ds is independent of f for a sufficiently

thin cylinder (wire).

It is evident that Ds given by (14) is much more convenient to
use than the form given earlier in (10). However in cases where P.

* 'is not much greater than a, it is desirable to seek a correction to
1114) which introduces P0 in a relatively simple way.

Let us consider the Debye or tannent approximation to the Hankel

f'nction. This is a more accurate asymptotic approximation and is not
limited to the case where kosine?ri. The Debye asymptotic approximation
is

ii(2)(x) ", sic ejx(si n aIcos m) 16)1

where x cosa= m.

,f
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The following approximations are valid for m/x < 1 (but x not close
to n).

Vx2sincL q/L m 2x .

+ [ Z)- (17a)
lixx _s n.

3i

x sinc x - m ) + ( -)j (17b)

x c cosc a imj-rm2 (17c)

Substituting the above into (16) and noting that

iT

m 1 (18)

H (2 )(x2 x e - + x (18) "

m ~2x

It is evident that the term in the bracket and the following exponential term
are approximately equal to unity for x->m; hence the term preceding the
bracket is the large argument approximation (see (11) where x=kPosine). Since
the series representation of Se given in (5) converges for m*2kasine, it
follows from the condition xim that P0 >2a, since x=kPosine here. The
condition P0>2a is usually met in practice.

The relative size of the correction terms in (18) which contain the
ratio m/x (with m-2 ka sine and x=kP o sine) indicates whether the form of
[s with the large argument approximation for the Hankel function is valid.
If the correction terms are too large to be neglected and Po>2a, the
Debye form of the Hankel function in (18) can be used in (18) with the
result that

: 2_k 1 m- M(ka sined)
0= - l sI C m(-l)" Cos mn xxs V n d m=( k d(2)j(ka sine(19)

+• m

+ P~i~ d  exp j k~~n ~ snd (19)

6



B. Hard Diffraction Coefficient

One can proceed in a similar manner to find the hard diffraction S
coefficient Dh by replacing the z-directed, electric current moment by
a z-directed magnetic current moment. Note that F is now perpendicular
to the aforementioned plane of incidence. For this case the :-component
of the diffracted field is given by

dsi -jks "•

E d(s) = E'(1 )Dh s e- (20)

in which E i(Qc) is the (scalar) incident electric field at the point o
diffraction Qc. Following the same steps used to obtain (10) for the
soft diffraction coefficient, we find that 0

DI, is ejks' -jkz 0cos, 21

where the expression for Sm derived in the Appendix is

mJm  (ka sin")

Sm Y M P - - H 2 (ko sinQ)cos ml (22)
m=O H- 7 (ka sinO) m 0

m

in which the prime denotes differentiation with respect to the arqument.

For the case where ro-a, the large argument approximation for
H 2 )(k;o0sini) may be used as before to obtain

- 1 ' Jm(ka sinOd)

Dh TT -k sintd m _l)d m=O m H (2) (ka sin o(23)
h ik sn ~m snd)

which compares with (14) for the other polarization (soft case). For a
very thin wire where ka < 1, the above expression simplifies further to

-e 4 (ka sind)dDh - (1+2 coso) 24
12-lk sinod

Comparing the above equation with (15), it is clear that Dh!"- Ds', as
one would expect for the thin wire case. Furthermore one notes that
there is null in the diffraction pattern at W = 12O'.

7.
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jf o is not "a but o-'2a, we may employ the Debye approximation
of H4 (kposinO) with the result that

.?)mi '(ka sin d)h - k sint)d m (_m J(T(ka ---- cos six
d m 0 H H-m ... sin d)

23[i (k1 m )2 .. [/"In ) I ( m 3 (5

X + 2pPoSinGd 4xpjm[ko sin + (ko mnd (25)
od0 sn"d 0 -I

which compares with (19) for the other polarization.

The scalar diffraction coefficients may be employed in a dyadic
diffraction coefficient of the same form as that derived for edge
diffraction [1]. As mentioned earlier, the plane of incidence is defined
to be the plane containing the incident ray to the diffraction point Qc
and the axis of the cylinder, and in addition we may introduce a plane
of diffraction defined to be the plane containing the diffracted ray .*
and the axis of the cylinder. The angle between these two planes is .

Let us now decompose the incident electric field into [i(Qc)1 and Ei(Qc),
components parallel and perpendicular to the plane of inciqence; simi-
larly let us separate the diffracted electric field *nto Ea(s),and Ed(s) ,
components parallel and perpendicular to the plane of diffraction. Then
in matrix form

s e (26)

where the directions of the parallel field components are shown in Figure 1,
and the direction of the perpendicular component in each case is determined
by taking the vector product of the parallel unit vector (see Figure 1) with
a unit vector in the direction of propagation. We conclude this section
by presenting some numerical results for the mqnitude of Ds and Dh as a
function of Il for various cylinder radii from ka = .25 (a = .04A) to
ka = 4 (a = .64A); Od = 900 in each case. Equations (14) and (23) were
used to calculate the curves shown in Figures 2 and 3. The number of
terms included in the series varied with cylinder size. For the two
smaller cylinders 4 terms were used, for the ka = 1 cylinder 5 terms,
and for the ka = 4 cylinder 8 terms. In line with the earlier discussion,
larger diameters could be accommodated at the cost of includinq more terms
(approximately 2ka sinOd) in the series. It is seen that the curves for
ka = .25 approximate the behavior predicted by (15) and (24), which was
described earlier.

8
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C,001I
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Figure 2. D5 for a circular cylinder of
P radius a; 6d=90'); '
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Eq.24 FOR Ka=0.25-
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Figure 3. Dh for a circular cylinder of
radius a; 8d=90 '; po>>a.IL
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III. MODELING AN APERTURE ANTENNA

Let u, now proceed to tie computer code developed to calculate tne
cylindrical aperture blockage. The problem which can be handled with the
present program is shown in Figures 4 and 6. The equivalent currents in
the aperture are modeled with z-airected electric and magnetic dipoles
situated in the YZ-plane. The magnitudes of the various dipoles can be
adjusted so as to model tapered or other non-uniform aperture distributions.
The cylindrical scatterer of radius a is located at p = po, = o, and is
parallel to the z axis. The program is capable of computing the far-field
patterns in the XY (i.e., 4 = 90") plane, both with and without the
cylinder present. Thus only a one-dimensional model of the aperture is
required.

6
The dipole moments Idl and Kdl for the equivalent electric and magnetic

dipoles are obtained from the electric field aperture distribution as shown
in Figure 5. The aperture is divided into thin vertical strips of width W,
where the W is chosen small enough so that the relative phase of the aperture
fields are essentially constant across the strip for all pattern aspects.
From the uniqueness theorems we know that only the y- and z- (tangential)
components of the E field (or H field) need to be specified in the aperture.
For a planar aperture, assuming that the fields in the aperture plane out-
side the aperture region are negligibly small, we have, from the equiva-
lence principle,

Jz(y,z) = -2 Ez (y,z)/rn (27) :;'

K (y,z) = -2 E (y,z) (28)z y

where J and K are the equivalent electric and magnetic surface currents in
the aperture, the subscripts denote the y and z components, and n is the
free space characteristic impedance.

We can easily obtain the electric and magnetic dipole moments cor-
responding to the equivalent currents for any aperture strip. For the
dipoles located at Y=yn we have

zb Yn +w/2

Idl I Jz (y,z)e JkZ coso dy dz (29)
d -Zb jyn-w/2 S

Kdl zb f Yn+/ K z(.y,z)e JkZ cose dy dz (30)
-zb Yn-w/2

f f ,ikz c sl



Y a

Pr

24

Yb

-Ybq

Z Directed
Dipoles

Figure 4. The present computer program is capable of calculating
the far field pattern as a function of 9(O=90') for
the geometry shown. The aperture antenna is modeled
by the z directed magnetic and electric dipoles located
along the y axis. The dipole magnitudes need not be
identical, so that tapered aperture distributions may
be modeled.
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The far-fields of these z-directed dipoles are given by

Ea kq Idi e jrsinO (31)

-jkr
k Kdl e k  sin (32)47T r

With these equations and the diffraction coefficient developed in the
previous section the computer code for the radiation from the sources
shown in Figure 4 has been developed in a straightforward manner. The
total field Et due to the electric dipole at Yn is the sum of the direct
(or incident) field from the dipole given by (31) with r = rn, 0 900
and the field diffracted from the cylinder

-jkPn  jkPncos(,_ n) ejkrn .b4
Ed jkn Idl e Ds(_ n )e ne (33)0471 n r

in which Pn is the distance between the dipole at Yn and the axis of the
cylinder, n is the angle P, makes with the x-axis, rn is the distance
between the dipole at Yn and the field point, and Ds(O-On) is calculated
for 8 = od = 900. Combining (31) and (33)

-jkrn -jkp n jkn cos(- )]
E =j k41dl e [ + e Ds( -¢n)e n n (34)

The total far-field due to all the z-directed electric current dipoles in
the aperture is calculated by summing (34) on n to obtain the contributions
from the 2b/w dipoles involved.

14I
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IV. CYLINDER BLOCKAGE EFFECTS ON THE LAMPS ANTENNA

Let us now proceed to use the previously presented method to predict -

the effects of mast blockage on the LAMPS antenna. The problem geometry
is shown in Figure 6. The LAMPS antenna itself is an offset fed para-
bolic reflector antenna with the following estimated parameters:

* Diameter: 34 inches
Gain: 28 dB @ 4.6 GHz (Midband)
Polarization: Linear Vertical
Beamwidth: 50 x 50.

In order to simplify our model of the LAMPS antenna we will assume
that the effects of aperture blockage due the feed and its supports can
be neglected. This assumption will have little effect on our calculations
when cylinder blockage is a significant factor, since the pattern degradation
caused by the cylinder will be much greater than that caused by aperture

* blockage. However, patterns calculated with the blocking cylinder absent
will have far out sidelobes at an unrealistically low level [7]. This should
be kept in mind when evaluating the effects of the cylinder blockage on
the pattern.

For lack of more detailed information we will also assume that the
aperture distribution is radially symmnetric, and of the type

[ 2 -2p

where b is the aperture radius and here r is measured radially in the plane
of the aperture from its center (see Figure 5). This assumption yields, for
the LAMPS aperture, at 4.6 GHz, the following Table [6]:

P Gain 1/2 Power Beamwidth

*0 32.33 4.420
1 31.08 5.50

2 29.81 6.370
*3 28.76 7.150

Since the gain of the antenna is more easily affected by spillover,
blockage, losses, etc., than the pattern shape, we will choose p = 1,
because this distribution produces the beamwidth which is closest to the
given value of 50.

We can now proceed to use (29) and (30) to evaluate the relative
dipole magnitudes Idl and Kdl. Since the antenna is vertically polarized,
Kdl 20. Referring to the geometry of Figure 5, we have from Equation (29),

15



FU <n+W ii Yt4 kZ cos' 35
Idl C - - dy dz (35)

-ZJ B -w/2 \ bI
Zb

2 2+z2
since r =Y +z. The factor C is an unknown constant which need not concern
us since we are interested in relative pattern levels rather than absolute
field strengths. Since the cylinder and the pert~re d~poles are vertical,
i = 90". If we make the approximation that r 'I y. + z (since w - b),
and note that zb = b2 - y2, we obtain n |

n
2_Y _ C 2_ 2 3/2+ 2, 2_ 2 112]Idl = C • 2w~ b 2 - n 3b 2  [(b-yn) +3yn (b-yn) (36)

for the dipole strength as a function of strip width w and dipole position
Yn. Note that the first term in (35) is the dipole strength for a uniform
distribution; the second term is due to the assumed

I (r L,

taper. The result obtained in (36) was used in the previously described
computer program. Convergence tests were made, and it was found that 40
strips gave accurate results for the 13.23A diameter LAMPS antenna. As
will be seen the half power beamwidth, the Ist side-lobe level of -24.6 dB,
and the Ist null position of 7.10 of the unblocked antenna pattern are
quite accurately reproduced [6].

The calculated radiation patterns in Figures 7 through 14 will be
discussed next. In Figures 7 and 8 the variation of the blockage effects
with the mast-to-LAMPS antenna separation is shown. The separation p is
varied within the given range of 2 ft. to 10 ft. Note that despite t~e
5 to 1 variation in separation the on-axis blockage varies less than
0.4 dB. This occurs because we are within the near field of the antenna
throughout this range of Po variation. Indeed, using the D2/p far field
criteria, the near field for the LAMPS antenna extends to 37.5 feet.
Thus for the range of Po values indicated in the Figures 7 and 8 the
antenna beam has not started to spread and the 1/r spherical wave field
behavior is not yet evident. Thus any attempt to reduce the on axis
blockage by increasing the antenna-cylinder spacing ro will have little
effect for spacings of less than 30-40 feet. The blockage effect for on-
axis separations of D2/A = 37.5 feet and 2D2/ = 75 feet are shown in
Figure 9. The scattered field from the cylinder is known to decrease by
3 dB when the separation between the antenna and cylinder is doubled in
the far-zone of the antenna. This decrease is apparent in the region
*>40", where the field directly radiated from the antenna is insignificant.
The small irregularities in the two patterns are caused by the large
separation of the cylinder and aperture with a resulting rapid phase 01
variation with aspect of the second term within the brackets of (34).

16



In Figures 10 and 11 the variation of blockage effects with cylinder
radius is shown. The larger cylinders have greater on-axis blockage due
to their greater shadowing effect. The exact on-axis blockage loss for
the curves of Figures 10 and 11 are as indicated in the figure titles.

In Figures 12, 13 and 14 the effects of varying the angular position
of the blocking cylinder are illustrated. In Figure 12 patterns are cal-
culated for O values of 00, 100, and 30'. For 4o = 100 the cylinder is
near the edge of the near field "beam" and the blockage is greatly de-
creased from the kO = 00. For O = 300 the cylinder is well out of the
active near field region, and the scattering effects of the cylinder are
negligible except for the far-out sidelobe levels.

Figures 13 and 14 confirm that a knowledge of the far field pattern0
of the LAMPS antenna does not provide insight into near field blockage
effects. For example, the far field pattern has a null at =70 and a
first sidelobe at =9'. Thus, were the cylinder in the far field of
the antenna, locating the cylinder at 4o 70 should produce less effect
than with the cylinder at o = 9'. The results shown in Figures 13 and
14 indicate that the opposite results, and that the far field distrioution
has not yet been formed for a separation of only 6 feet.

At this point, as a reminder, we repeat that the unperturbed patterns
shown in Figures 7 through 14 were calculated without including blockage
effects of the feed system; thus the sidelobe levels are unrealisticallyU low. For a more valid comparison one should compare the calculated side-
lobe levels of the perturbed (by the cylinder) patterns with measured
patterns of the LAMPS antenna. However, the figures contained herein
do provide a good estimate of the effects of the cylinder, since for the
range of Po, o' and a values considered the blockage effects of the
cylinder are usually much more significant than those of the feed system. -

17



TOP VIEW7

I2

SIDE VIEW

Figure 6. LAMPS antenna with a blocking cylinder.
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V. CONCLUSIONS

An expression for the cylindrical diffraction coefficient suitable for
use with circular cylinders has been developed. The diffraction coefficient
is in the GTD format, and can be incorporated into a general, ray-optical
analysis of a radiating system. Usinq this diffraction coefficient a
computer code has been written which is capable of calculatini antenna
patterns for an aperture antenna in the vicinity of a circular conducting
cylinder. At present the cylinder must be parallel to the plane )f the
aperture, and the pattern cut must be in the plane perpendicular Co the
cylinder axis. However, the theory needed for an extension of the code
to the more general case is included herein. Recently these diffraction
coefficients have been used to calculate the aperture blockage in the case
of a reflector antenna with cylindrical feed supports [7].

Using this computer code the blockage effects of a 3" to 6' radius
mast located 2 to 10 feet from the 34" diameter LAMPS antenna were cal-
culated at 4.6 GHz. It was found that on-axis blockage, with the cylinder
directly in front of the antenna ranged fromi -3.67 dB for a 3" radius
cylinder to -7.96 dB for a 6" radius cylinder with the distance held
constant at 6'. The on-axis blockage was affected very little by changing
the antenna mast separation P0 staying with ±0.2 dB of -4.8 dB as P

* varied from 2' to 10', with a 4" cylinder again located directly in ?ront
of the antenna. This insensitivity to mast-antenna separation is due to
the fact that the mast is located well within the near field region of the

U LAMPS antenna for separations less than 30-40 feet. The on-axis blockage
was found to decrease in the appropriate manner as P0 was increased from
37.5 to 75 feet.

With P0 held at 6 feet the on-axis blockage was reduced significantly
as the mast was rotated from in front of the antenna. As P changed from
0'Q to 100 to 30' the on-axis blockage was reduced from -5. 0? dB to -1.416 dB
to 0.0 dB. In general, the amount of angular displacement of the mast away
from on axis (4 0 00) required to reduce the blockage below a given level

* is reduced by increasing P0 the antenna-mast separation.
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APPENDIX

THE FIELDS OF AXIAL DIPOLES IN THE PRESENCE OF A CIRCULAR CYLINDERm
The geometry and coordinates are shown in Figure 1. The Green's

function method will be used to find the radiated fields. Due to the
nature of the problem, we need only find Ez, the z component of the
electric field, for the electric dipole case, and Hz for the magnetic
dipole case. As in the text, the cylinder is perfectly conducting. Once
these components are found then

EC = -Ez/sin o (Al)

E = nz /sin 8 (A2)

The scalar Green's functions of interest here satisfy the inhomo-
geneous partial differential equation

(V2 + k2) G(r,r') : -6(r-F') (A3)

together with the radiation condition at infinity and certain boundary
conditions on S. The Green's function GI(r,r') : 0 when r is on the
cylindrical surface, whereas

SG2 (7,r) :=0

when r is on the cylindrical surface. Here n' is taken in the direction
normal to the cylindrical surface. For the circular cylinder

7n @p

--- r is the position vector for the field point (p,q,z), and r' is the
position vector for the source point (p',4',z').

It can be shown that the solution to the boundary value problem for
Gl is
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I ' ,' - \ < ,r ) + G ( r '

c' 0 1 j J)e

e k +I ' ('a) 2 . )f( ) ( , )
4- R 8TT M

-- -" - k -' J (. a )
m

I x eih( z-z ) dh (A4)

in which

'" " -. j k R

Go(R) --- .-- is the free-space Greet", function,
07 R-

R r-r' is the distance betwcen the field and source points,

2k -h

and the subscripts -,, mean choose the value of or c whichever
• is smaller or larger, respectively.

' replace_ . (2)
* In the far-zone one may replace by its large argument

asymptotic approximation; furthermore (z-z') is large, so the above
integral in Ge may be evaluated asymptotically to obtain

-I e -jkr .1 (ka sin,)
e Ille 41r n~ II i (ka sin-)

0

"x H4(  (k, 'sin-))cos m( - ) (A5)
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In this discussion the source is the electric current density

d = e (-r'- )z (A6)

where the position vector Po defines the source location (p0 ,o,) shown
in Figure 1.

For such a z-directed source it follows from Maxwell's equations
K that

[V2 + k2]Ez = j 1v + - z J (A7)

Using Green's second identity or comparing the above equation with (A3),
it follows that

Ez =-j [ L 2 I(,-)

(r 1 + L Gl r P (A8)z ~ 2  z2 0e

In the far-zone this simplifies to

E (r) =-jkn sin 2Q G (r,o )pe, (A9)*z 1 o e

where wp has been replaced by kn. Thus from (Al), (A4), (A5) and (A9)

and noting that

R r - P0 sine cos.

* with r >> Po in the far-zone,

kne e-jkr jkposinO coso
E sin Pe) r--sine

CO £ J Hka sine) (2)

m=O H (ka sine)Sin)cos (AlO)m

L. which is the same as (4) in the text. 0
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The magnetic current moment (dipole) pr qives rise to a :-direct ,d
electric field. The derivation of the expression for L, closely iaralel.
the proceding_development. One starts with G2(r,r') which has the same
form a- Gl(r,r') except that the ratio

1) (ka) 3 (ka)
in G is replaced by 4 (-a) -

l m (Ka)

where Lhe prime denotes differentiation with respect to the argument.
Then following the steps taken in the preceding case and employing
duality, we find that

p

Hz =-j s G (ro )p (All)
z o2 o m

and so from (A2)

--jk e-jkr Jke0 sin cos
E 4 Pm r sine e

III J' (ka sine)(27- (2a Hse (kP sino)cos m], (Al2)

m=O m (ka sine) mm

in the far-zone. The first term in the above equation is the field
directly radiated from the magnetic dipole (the incident field), and
the second term is the field diffracted by the cylinder. The second
term is used to find the hard diffraction coefficient and so to define
Sm in (22).

r2
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